Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
EClinicalMedicine ; 58:101883-101883, 2023.
Article in English | EuropePMC | ID: covidwho-2286818

ABSTRACT

Background Olfactory impairments and anosmia from COVID-19 infection typically resolve within 2–4 weeks, although in some cases, symptoms persist longer. COVID-19-related anosmia is associated with olfactory bulb atrophy, however, the impact on cortical structures is relatively unknown, particularly in those with long-term symptoms. Methods In this exploratory, observational study, we studied individuals who experienced COVID-19-related anosmia, with or without recovered sense of smell, and compared against individuals with no prior COVID-19 infection (confirmed by antibody testing, all vaccine naïve). MRI Imaging was carried out between the 15th July and 17th November 2020 at the Queen Square House Clinical Scanning Facility, UCL, United Kingdom. Using functional magnetic resonance imaging (fMRI) and structural imaging, we assessed differences in functional connectivity (FC) between olfactory regions, whole brain grey matter (GM) cerebral blood flow (CBF) and GM density. Findings Individuals with anosmia showed increased FC between the left orbitofrontal cortex (OFC), visual association cortex and cerebellum and FC reductions between the right OFC and dorsal anterior cingulate cortex compared to those with no prior COVID-19 infection (p < 0.05, from whole brain statistical parametric map analysis). Individuals with anosmia also showed greater CBF in the left insula, hippocampus and ventral posterior cingulate when compared to those with resolved anosmia (p < 0.05, from whole brain statistical parametric map analysis). Interpretation This work describes, for the first time to our knowledge, functional differences within olfactory areas and regions involved in sensory processing and cognitive functioning. This work identifies key areas for further research and potential target sites for therapeutic strategies. Funding This study was funded by the 10.13039/501100000272National Institute for Health and Care Research and supported by the Queen Square Scanner business case.

2.
EClinicalMedicine ; 58: 101883, 2023 Apr.
Article in English | MEDLINE | ID: covidwho-2286819

ABSTRACT

Background: Olfactory impairments and anosmia from COVID-19 infection typically resolve within 2-4 weeks, although in some cases, symptoms persist longer. COVID-19-related anosmia is associated with olfactory bulb atrophy, however, the impact on cortical structures is relatively unknown, particularly in those with long-term symptoms. Methods: In this exploratory, observational study, we studied individuals who experienced COVID-19-related anosmia, with or without recovered sense of smell, and compared against individuals with no prior COVID-19 infection (confirmed by antibody testing, all vaccine naïve). MRI Imaging was carried out between the 15th July and 17th November 2020 at the Queen Square House Clinical Scanning Facility, UCL, United Kingdom. Using functional magnetic resonance imaging (fMRI) and structural imaging, we assessed differences in functional connectivity (FC) between olfactory regions, whole brain grey matter (GM) cerebral blood flow (CBF) and GM density. Findings: Individuals with anosmia showed increased FC between the left orbitofrontal cortex (OFC), visual association cortex and cerebellum and FC reductions between the right OFC and dorsal anterior cingulate cortex compared to those with no prior COVID-19 infection (p < 0.05, from whole brain statistical parametric map analysis). Individuals with anosmia also showed greater CBF in the left insula, hippocampus and ventral posterior cingulate when compared to those with resolved anosmia (p < 0.05, from whole brain statistical parametric map analysis). Interpretation: This work describes, for the first time to our knowledge, functional differences within olfactory areas and regions involved in sensory processing and cognitive functioning. This work identifies key areas for further research and potential target sites for therapeutic strategies. Funding: This study was funded by the National Institute for Health and Care Research and supported by the Queen Square Scanner business case.

3.
BMC Infect Dis ; 21(1): 221, 2021 Feb 25.
Article in English | MEDLINE | ID: covidwho-1105700

ABSTRACT

BACKGROUND: Loss of smell and/or taste are cardinal symptoms of COVID-19. 'Long-COVID', persistence of symptoms, affects around one fifth of people. However, data regarding the clinical resolution of loss of smell and/or taste are lacking. In this study we assess smell and taste loss resolution at 4-6 week follow-up, aim to identify risk factors for persistent smell loss and describe smell loss as a feature of long-COVID in a community cohort in London with known SARS-CoV-2 IgG/IgM antibody status. We also compare subjective and objective smell assessments in a subset of participants. METHODS: Four hundred sixty-seven participants with acute loss of smell and/or taste who had undergone SARS-CoV-2 IgG/IgM antibody testing 4-6 weeks earlier completed a follow-up questionnaire about resolution of their symptoms. A subsample of 50 participants completed an objective olfactory test and results were compared to subjective smell evaluations. RESULTS: People with SARS-CoV-2 antibodies with an acute loss of sense of smell and taste were significantly less likely to recover their sense of smell/taste than people who were seronegative (smell recovery: 57.7% vs. 72.1%, p = 0.027. taste recovery 66.2% vs. 80.3%, p = 0.017). In SARS-CoV-2 positive participants, a higher percentage of male participants reported full resolution of smell loss (72.8% vs. 51.4%; p < 0.001) compared to female participants, who were almost 2.5-times more likely to have ongoing smell loss after 4-6 weeks (OR 2.46, 95%CI 1.47-4.13, p = 0.001). Female participants with SARS-CoV-2 antibodies and unresolved smell loss and unresolved taste loss were significantly older (> 40 years) than those who reported full resolution. Participants who experienced parosmia reported lower smell recovery rates and participants with distorted taste perception lower taste recovery rates. Parosmia had a significant association to unresolved smell loss (OR 2.47, 95%CI 1.54-4.00, p < 0.001). CONCLUSION: Although smell and/or taste loss are often transient manifestations of COVID-19, 42% of participants had ongoing loss of smell, 34% loss of taste and 36% loss of smell and taste at 4-6 weeks follow-up, which constitute symptoms of 'long-COVID'. Females (particularly > 40 years) and people with a distorted perception of their sense of smell/taste are likely to benefit from prioritised early therapeutic interventions. TRIALS REGISTRATION: ClinicalTrials.gov NCT04377815 Date of registration: 23/04/2020.


Subject(s)
Ageusia/etiology , Antibodies, Viral/blood , COVID-19/complications , Olfaction Disorders/etiology , Adult , Cohort Studies , Female , Humans , Immunoglobulin M/blood , London , Male , Middle Aged , Olfaction Disorders/diagnosis , SARS-CoV-2 , Sex Factors , Smell , Surveys and Questionnaires , Treatment Outcome
4.
PLoS Med ; 17(10): e1003358, 2020 10.
Article in English | MEDLINE | ID: covidwho-810270

ABSTRACT

BACKGROUND: Loss of smell and taste are commonly reported symptoms associated with coronavirus disease 2019 (COVID-19); however, the seroprevalence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) antibodies in people with acute loss of smell and/or taste is unknown. The study aimed to determine the seroprevalence of SARS-CoV-2 antibodies in a community-based population with acute loss of smell and/or taste and to compare the frequency of COVID-19 associated symptoms in participants with and without SARS-CoV-2 antibodies. It also evaluated whether smell or taste loss are indicative of COVID-19 infection. METHODS AND FINDINGS: Text messages, sent via primary care centers in London, United Kingdom, invited people with loss of smell and/or taste in the preceding month, to participate. Recruitment took place between 23 April 2020 and 14 May 2020. A total of 590 participants enrolled via a web-based platform and responded to questions about loss of smell and taste and other COVID-19-related symptoms. Mean age was 39.4 years (SD ± 12.0) and 69.1% (n = 392) of participants were female. A total of 567 (96.1%) had a telemedicine consultation during which their COVID-19-related symptoms were verified and a lateral flow immunoassay test that detected SARS-CoV-2 immunoglobulin G (IgG) and immunoglobulin M (IgM) antibodies was undertaken under medical supervision. A total of 77.6% of 567 participants with acute smell and/or taste loss had SARS-CoV-2 antibodies; of these, 39.8% (n = 175) had neither cough nor fever. New loss of smell was more prevalent in participants with SARS-CoV-2 antibodies, compared with those without antibodies (93.4% versus 78.7%, p < 0.001), whereas taste loss was equally prevalent (90.2% versus 89.0%, p = 0.738). Seropositivity for SARS-CoV-2 was 3 times more likely in participants with smell loss (OR 2.86; 95% CI 1.27-6.36; p < 0.001) compared with those with taste loss. The limitations of this study are the lack of a general population control group, the self-reported nature of the smell and taste changes, and the fact our methodology does not take into account the possibility that a population subset may not seroconvert to develop SARS-CoV-2 antibodies post-COVID-19. CONCLUSIONS: Our findings suggest that recent loss of smell is a highly specific COVID-19 symptom and should be considered more generally in guiding case isolation, testing, and treatment of COVID-19. TRIALS REGISTRATION: ClinicalTrials.gov NCT04377815.


Subject(s)
Antibodies, Viral/blood , Coronavirus Infections/complications , Olfaction Disorders/virology , Pneumonia, Viral/complications , Taste Disorders/virology , Adult , Betacoronavirus , COVID-19 , COVID-19 Testing , Clinical Laboratory Techniques , Coronavirus Infections/diagnosis , Coronavirus Infections/immunology , Female , Humans , Immunoglobulin G/blood , Immunoglobulin M/blood , London , Male , Middle Aged , Pandemics , Pneumonia, Viral/immunology , Point-of-Care Testing , SARS-CoV-2 , Seroconversion , Seroepidemiologic Studies , Text Messaging
SELECTION OF CITATIONS
SEARCH DETAIL